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Received 24 March 1997

Abstract. Inspired by a recently proposed procedure by Leonhardt and Raymer for wavepacket
reconstruction, we calculate the irregular wavefunctions for the bound states of the Coulomb
potential. We select the irregular solutions which have the simplest semiclassical limit.

1. State reconstruction

There are deeply rooted reasons why the state of a quantum system cannot be seen directly.
For instance, quantum states may comprise complementary features (such as position and
momentum information) which cannot be observed simultaneously. There are experimental
techniques to infer the state of a quantum system from observations [1–6]. In particular
the observation of moving one-dimensional wavepackets reveals the quantum state [7–9].
The measured quantity is the position probability distribution evolving in time. Since the
position operators at different times do not commute with each other, in general, these
measurements probe different complementary features of the wavepacket, to the extent that
the complete state can be inferred from observations.

This state-reconstruction procedure is summarized in a couple of lines [10, 11]: The
density matrixρmn in energy representation† is the classical average

ρmn =
〈〈
∂

∂x
[ψ∗m(x, t)ϕn(x, t)]

〉〉
x,t

(1)

with respect to the observed positionx and timet denoted by double brackets. The quantity
∂[ψ∗m(x, t)ϕn(x, t)]/∂x that is averaged consists of the regular wavefunctionψm(x, t) and
of the irregular wavefunctionϕn(x, t). They are defined as

ψn(x, t) = ψn(x) exp(−iωnt) (2)

ϕn(x, t) = ϕn(x) exp(−iωnt) (3)

whereψn(x) andϕn(x) are both solutions of the time-independent Schrödinger equation[
−1

2

d2

dx2
+ U(x)

]
φn(x) = ωnφn(x) (4)

with the eigenfrequencyωn. (The massm and h̄ are set to unity.) However, onlyψn(x)
is normalizable and can be regarded as a proper quantum-mechanical wavefunction. The
irregular wavefunction should obey the Wronskian condition [7, 8]

ψn(x)
dϕn (x)

dx
− dψn (x)

dx
ϕn(x) = 2. (5)

† We assume that only the discrete part of the spectrum is excited.
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This condition implies thatϕn is not normalizable since none of the discrete levels are
degenerate [14, section 21]. Nevertheless, the regular wavefunctions decay rapidly enough
so that the average (1) converges [10, 11]. The Wronskian condition (5) plays the role of a
‘normalization’ for the irregular wavefunctions. However, these functions are not uniquely
determined because we could always add a multiple of a regular wavefunctionψn to ϕn
without changing the Wronskian. We note that we can also reverse the order of the regular
and irregular part in equation (1) without changing the result

ρmn =
〈〈
∂

∂x
[ϕ∗m(x, t)ψn(x, t)]

〉〉
x,t

. (6)

The mutual relation of the regular and the irregular wavefunctions is especially
transparent in the semiclassical representation [10,12]

ψn(x) = cn√
pn(x)

cos
[
Sn(x)− π

4

]
(7)

ϕn(x) = 2c−1
n√

pn(x)
sin
[
Sn(x)− π

4

]
(8)

with

pn(x) = dSn
dx
. (9)

They appear as standing position-probability waves which are out of phase with respect to
each other. In the semiclassical approximation and in the classically allowed region, the
quantitypn(x) is the classical momentum

pn(x) =
√

2ωn − 2U(x) (10)

andSn(x) is the time-independent part of the classical action

Sn(x) =
∫ x

an

pn(x) dx. (11)

Herean denotes the left turning point wherepn(an) vanishes. As we have already mentioned
we could always add a multiple of the regular solution (7) to the irregular one (8) and the
Wronskian condition (5) would not be affected. However, formula (8) appears as the most
natural and aesthetical choice. In particular, this irregular solution leads to a very simple
expression for the diagonal case [12]

fnn(x) ≡ ∂

∂x
[ψ∗nϕn] ∼ 2 sin[2Sn(x)]. (12)

Here we have neglected the slow variation of the semiclassical momentumpn(x) compared
with the actionSn(x).

2. Hydrogen atom

One of the most beautiful exactly solvable problems in quantum mechanics is the hydrogen
atom. Throughout the history of quantum physics it has been used as the classic benchmark
for the state of theory and experiment. So it seems quite natural to consider the hydrogen
atom as an example of the state reconstruction of anharmonic wavepackets†. This requires
the calculation of the irregular wavefunctions.

† The other classic example, the harmonic oscillator, was extensively treated in [12] and references therein.
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We consider only the radial motion of the bound states and we assume the angular-
momentum quantum numbersl and m as being fixed and given. There is not much
difference between this quasi-one-dimensional motion and the true one-dimensional case.
The radiusr must not be negative and there may be a singularity at the originr = 0. Let us
write the stationary Schrödinger equation for the (regular or irregular) radial wavefunction
φn(r) = rRn(r) in atomic units[

−1

2

d2

dr2
− 1

r
+ l(l + 1)

2r2

]
φn(r) = − 1

2n2
φn(r). (13)

This equation has two linearly independent solutions which are conveniently expressed
in terms of the Whittaker functions [13]Wn,l+1/2(2r/n) andW−n,l+1/2(eiπ2r/n). Because
W−n,l+1/2 is a multiple-valued function we prefer to write eiπ instead of−1 in the argument.
Since [13, section 2, equation (28)]

Wn,l+1/2(2r/n) = (−1)nr nr !

(
2r

n

)l+1

e−%/nL2l+1
nr

(2%/n) (14)

with the radial quantum number

nr = n− l − 1 (15)

we may write the familiar normalized wavefunctions [14, equation (36.13)] (in the modern
notation of the Laguerre polynomialsLan (cf [15, p 439])) in terms of the Whittaker function

ψn(r) = (−1)nr

n
(nr !(n+ l)!)−1/2Wn,l+1/2(2r/n). (16)

We wish to find the real irregular wavefunctions with the asymptotic limit (8) for high
quantum numbers. However, the second linearly independent solutionW−n,l+1/2(eiπ2r/n)
is complex valued forr > 0. Therefore we must compensate the imaginary part of
W−n,l+1/2(eiπ2r/n) by a proper multiple of the regular solution. For this purpose we make
the general ansatz

ϕn(r) = AWn,l+1/2(2r/n)+ BW−n,l+1/2(e
iπ2r/n). (17)

We seek the constantsA andB such thatϕn(r) is real and obeys the Wronskian condition (5).
Since the Wronskian ofWn,l+1/2(z) andW−n,l+1/2(eiπz) equals(−1)n, see [13, section 2,
equation (34b)], we obtain immediately from representation (16) and ansatz (17)

B = (−1)l+1n2
√
nr !(n+ l)!. (18)

To compensate the imaginary part of ansatz (17) we employ the logarithmic expansion [16,
equation (9.237.1)]

W−n,l+1/2(e
iπ2r/n) = 1

(n+ l)!
(
−2r

n

)l+1

e−r/nL2l+1
nr

(2r/n)[ln(2r/n)+ iπ ] + f (2r/n).
(19)

Heref (z) is an analytic function ofz which is real on the real axis. We see that the only
imaginary term in equation (19) is proportional to the regular solution. We utilize relation
(16) and find

A = − iπn2(−1)nr√
nr !(n+ l)!

. (20)

Consequently, the irregular wavefunctionϕn(r) is given as

ϕn(r) = − iπn2(−1)nr√
nr !(n+ l)!

Wn,l+1/2(2r/n)+ (−1)l+1n2
√
nr !(n+ l)!W−n,l+1/2(e

iπ2r/n). (21)
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Figure 1. Plot of some diagonal sampling functions for the state reconstruction (1), defined as
fnn(r) = ∂(ψ∗nϕn)/∂r (full curves), versus the squared regular wavefunctionsψ2

n (r) (broken
curves). In (a) we have setn = 1 (ground state) whereas in (b) n = 3 (second excited state).
For both figures thel quantum number equals zero. We see that the sampling functions resemble
the typical features of the squared wavefunctionsψ2

n (r). They detect these typical patterns in
the measured probability distribution. Therefore thefnn(r) are also calledpattern functions.
The pattern functions oscillate between−2 and+2, as can be seen from the semiclassical
approximation equation (12). Only the ground state shows a departure from this typical
behaviour. On the other hand, we would not expect that a semiclassical theory is justified
for the ground state.

Although this expression ‘looks complex’ we have seen thatϕn(r) is indeed real valued
for r > 0. In figure 1 we have plotted for two different values ofn, the diagonal pattern
functionsfnn(r) and have compared them with the probability distributionsψ2

n(r).

3. Semiclassical limit

We have found some irregular wavefunctions for the hydrogen atom. Are they the
desired sine-like oscillations (8) in the semiclassical limit? Let us recall the semiclassical
approximation for the Coulomb problem. As is well known, we must replace the centrifugal
term l(l + 1)/2r2 by (l + 1

2)
2/2r2 because of the singularity of ther−1 potential (Langer

modification, see for instance [17]). In this way we obtain the semiclassical momentum

pn(r) =
(
− 1

n2
+ 2

r
− (l +

1
2)

2

r2

)1/2

(22)

with the left turning point

an = n2− n
√
n2− (l + 1

2)
2 (23)
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and by integration (11) the time-independent part of the action

Sn(r) = rpn(r)+ n arccot
n2− r
nrpn(r)

−
(
l + 1

2

)[
π

2
+ arctan

r − (l + 1
2)

2

(l + 1
2)rpn(r)

]
. (24)

To see whether our choice ofϕn(r) leads indeed to the sine-like behaviour (8) we consider
the productψn(r)ϕn(r). First, we find an asymptotic expression using the exact formulae
and then we compare it with the semiclassical approximation.

We utilize the known asymptotical behaviour of the Whittaker functions

Wn,l+1/2(z) ∼ −
(

4z

n

)1/4

e−nnn sin
(

2
√
nz− nπ − π

4

)
(25)

W−n,l+1/2(z) ∼
( z

4n

)1/4
enn−n exp

(−2
√
nz
)

(26)

for n � 1, n � |z|, n � l and arg
√
z < 3π/4, see [13, section 7, equation (19)], and

obtain from equations (16) and (21)

ψn(r)ϕn(r) ∼
√
r

2
cos(4

√
2r). (27)

To find the asymptotics of the semiclassical approximation in the limit(l + 1
2)

2 � r � n2

we approximate

pn(r) ∼
√

2

r
(28)

in expression (24) and note that

n2− r
nrpn(r)

∼ n√
2r
− 1

2

√
2r

n
(29)

r − (l + 1
2)

2

(l + 1
2)rpn(r)

∼ − l +
1
2√

2r
+
√

2r

2l + 1
. (30)

We utilize that arccotz→ z−1 and arctanz→ π/2 for largez and obtain from equation (24)

Sn(r) ∼
√

2r + n
(

n√
2r
− 1

2

√
2r

n

)−1

−
(
l + 1

2

)
π

∼ 2
√

2r − (l + 1
2)π. (31)

Consequently, the product ofcnp
−1/2
n cos(Sn − π/4) and 2c−1

n p
−1/2
n sin(Sn − π/4) tends to

the same expression (27) as the productψn(r)ϕn(r) of the exact wavefunctions. This proves
that our choice of the irregular wavefunctionϕn(r) leads indeed to the sine-like behaviour
(8). In figure 2 we compare the exact pattern functionsfnn(r) with their semiclassical
approximation (12) and find a good agreement.

4. Summary

We have found the irregular wavefunctions of the hydrogen atom that satisfy the Wronskian
condition (5) and correspond to the simple semiclassical representation (8). In this way
we have performed the first explicit calculations to illustrate a recent proposal [7] for
the state reconstruction of anharmonic wavepackets. Although we were primarily guided
by the beauty of exactly solvable problems in quantum mechanics, our analysis may
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Figure 2. Comparison of the exact,fnn(r) = ∂(ψ∗nϕn)/∂r (full curve), with the semiclassical
formula fnn(r) ∼ 2 sin[2Sn(r)] for the sampling functions. In (a) we have setn = 3 (second
excited state) whereas in (b) n = 5 (fourth excited state). For both figures thel quantum number
equals zero. The agreement between the curves is remarkably good.

be experimentally relevant for state determinations of hydrogenic wavepackets. These
wavepackets occur in various areas of physics (they describe hydrogen-like atoms or
excitons, for instance). An experiment of this kind would require the determination
of the position probability distribution of the evolving wavepacket using a pump-probe
technique. To our knowledge these measurements have not been performed yet for
hydrogenic wavepackets. (On the other hand, wavepacket collapses and revivals have been
measured [18].) One reason is probably the experimental difficulty involved. However,
the reconstruction of the quantum state is an aim which is worth the effort of finding
experimental ways to measure hydrogenic wavepackets. Therefore we have reasons to
believe that our analysis will stimulate new experiments.
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